
CPSC 490 Senior Project
Spring 2020
April 20th, 2020

Chaos
A novel system for organization of diverse digital data

Sarim Abbas

Supervised by Mark Santolucito and Professor Ruzica Piskac

1

Table of contents

Chaos 1

Table of contents 2

Introduction 4

Principles 5

Control 5

Harmony 5

Simplicity 6

Related work 7

Web clippers 7

Document editors 7

Specialized web browsers 7

Architecture 8

File format 8

Graphical user interface (GUI) 10

Technologies 10

Layout 11

File explorer 12

Folder view 13

Modules 15

Website module 15

Slack module 17

Usability testing 19

Protocol 19

Results 19

Next steps 21

Views 21

Modules 21

New modules 21

2

Developer API 21

Module store 21

macOS improvements 21

Menu bar 21

Quick look plugin 22

Public communications 22

Acknowledgements 24

References 25

3

Introduction

Much of the data we produce and collect now lives on the web, but it can be surprisingly
fragile and ephemeral. Interesting content, including articles, images or streaming video
may vanish due to link rot. Creative and productive tools, many now offered as web apps
or services, may shutdown at any point, offering limited migration paths. It does not help
that most of our data is stored in proprietary and inaccessible formats, instead of building
on open standards or extending the capabilities of the operating system (OS). Moreover,
the web apps we use daily are rarely interoperable, and so our data exists in silos, as
evidenced by the dozens of app windows that we juggle in our daily workflows.

Chaos is a system for the organization, preview and archival of diverse digital information.
It is driven by a few powerful assumptions about the inherent similarities of web apps and
the data they produce. In doing, it aims to do for web app data what the OS has done for
native app data. First, Chaos proposes an open, container file format that brings web
apps into the realm of the file system. Second, it introduces a programmatic and graphical
interface for the creation, editing and organization of these files. With its modular
architecture, the use cases are theoretically infinite: users can archive links, write notes,
hold conversations and pull data from their favorite apps, all in a single interface, with the
proposed file format at its foundation. In sum, Chaos is an unconventional undertaking to
wrangle the chaos of our digital age.

4

Principles

Note: Due to its broad ambitions, and the generality incurred by acting more as a modular
platform than an app to complete particular tasks, it may not be immediately clear what
Chaos is all about. It may be useful to skip ahead to the Modules section, before returning
here. Learning about those implementation details may help develop an appreciation for
the important principles that deserve their place at the top of this report.

The Chaos project subscribes to a number of principles which guide its implementation,
which were referenced in the introduction:

1. Control
2. Harmony
3. Simplicity

Control

Web apps are attractive options for companies looking to implement SaaS -y business 1

models, with, admittedly, benefits for the user too, such as constant updates, cloud
backup and live collaboration. Increasingly, however, user data is locked behind company
servers, stored in proprietary formats, difficult to access outside of the web app’s natural
context, analyzed by black-box ML models, and sold to the highest bidder.

Chaos intends to return control back to the user by accessing all web data (including
social media accounts, creative tools and other products) on their behalf. Crucially, this
access is done client side, which means that all credentials and retrieved data are stored
safely on the user’s operating system. In fact, Chaos pledges, to the maximum extent
possible, not to spin up a single server of its own to mediate user data. Neither does it
bake in any non-essential telemetry, nor does it lock-in users with proprietary protocols
and formats; all data is stored in a transparent format (discussed later). Much of the code
is and will continue to be open-sourced. Users are free to leverage Chaos’ developer API
to build their own modules that access data on yet unsupported services (also discussed
later).

Harmony

We use dozens of native and web applications every day, switching hundreds of times
between them, to accomplish our tasks. Chaos promises, to the maximum extent
possible, a unified interface for managing all user data. If we take a step back, we realize
that most web apps are attractive interfaces for essentially CRUD operations on lists of
data objects, which I refer to in this document as information atoms. Whether emails
organized in inboxes, lists of todos (Todoist, Wunderlist), cards in Kanban boards (Trello)

 https://en.wikipedia.org/wiki/Software_as_a_service 1

5

https://en.wikipedia.org/wiki/Software_as_a_service

or notes (Docs, Notion), Chaos argues that there is nothing uniquely different about each
atom, and there is opportunity to exploit their similarities.

Chaos harmonizes all user data together in the computer’s file system using its proposed
file format. It also provides a common interface for organizing, viewing and editing these
files. With its modular architecture, it encourages developers to set up communication
between seemingly disparate services (dragging an email thread onto a social media
post, for example), making possible the sorts of interactions and interoperability that
technology companies have little economic incentive to provide.

Simplicity

Amidst the dozens of apps we use everyday, Chaos aims to bring back simplicity to
interactions with our data. It does not invent yet another paradigm or metaphor for the
simple task of storing lists of user data. Additionally, it strips down seemingly disparate
apps to their common core, and provides a unified interface that makes possible access
to all of them. Where there are genuine advancements in user experience, Chaos
shamelessly adopts, modifies and extends to provide a minimal, productive and
accessible experience for its own users.

Nor does Chaos reinvent the wheel by rebuilding the primitives that are already present in
the operating system. In this web app era, the OS is left virtually unused, and ever more
interactions take place in a company’s cloud. But the OS gives us many of the tools we
need already; a robust windowing system, performant search, and, by definition, offline
access. Chaos simply utilizes these features in clever ways to do the same for web app
data what the OS has hitherto done for traditional files.

6

Related work

A comprehensive review of existing solutions was done, which was organized into three
categories.

1. Web clippers
2. Document editors
3. Specialized web browsers

Web clippers

Web clippers save content from the web, often to another web app’s data model and
rarely to a file on the operating system. OneNote, Evernote, Walling, Are.na, Zotero and
many more apps and services provide such a clipper. But these clippers are intended to
archive static content, not dynamic web app data. These clippers are also one-size-fits-
all and are not extensible for specific use cases.

Document editors

Certain document editing apps, such as Notion, incorporate embed functionality to
integrate data across several web apps such as Drive, Slack etc. But this interoperability
is still achieved via proprietary protocols, and the company’s employees are responsible
for developing these integrations. When economic incentives do not align, it is all too
likely that these integrations will disappear. Some document editors such as Bear use a
container format such as .textbundle, similar to the one proposed by Chaos, but these
containers are not widely adopted and not generally applicable to all web app data, only
text.

Specialized web browsers

Franz, Rambox and Station are examples of GUIs that seemingly unite multiple web apps
in a single window. But on closer look, they are just specialized browsers that pin the
common web apps into a sidebar (similar to tabs). There are few features (with perhaps
the exception of unified search) to harmonize the multiple web apps together.

7

Architecture

All referenced code can be found in the project’s GitHub repository : https://github.com/2

sarimabbas/chaos.

File format

The proposed .chaos file format stores web app data (although technically it can store
any kind of data).

The .chaos specification was simultaneously simple and difficult to implement. Simple,
since writing the specification simply required agreement on a set of conventions for how
interfacing software should read and write .chaos files. Difficult, since the conventions
needed to be flexible enough to meet the currently stated aims of Chaos, as well as any
uses that develop for it in the future. Please see XKCD 927 about the dangers of this kind
of wishful thinking . 3

A .chaos “file” is actually a folder. On macOS, folders with the .chaos extension are
registered as document packages to give the illusion that the user is working with files in
Finder . By right-clicking the package, and clicking “Show Package Contents”, the user 4

can inspect its contents. I will subsequently use “package” and “file” interchangeably.

A minimally valid .chaos package has the following structure:

– my_website.chaos
–– manifest.json

The file package can also contain other assets: images, PDFs, other folders, binaries etc.
The basic idea is that the GUI will read the .chaos package, look for a manifest, and refer

 https://github.com/sarimabbas/chaos 2

 https://xkcd.com/927/ 3

 https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/4

CFBundles/DocumentPackages/DocumentPackages.html

8

https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/DocumentPackages/DocumentPackages.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/DocumentPackages/DocumentPackages.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/DocumentPackages/DocumentPackages.html
https://github.com/sarimabbas/chaos
https://github.com/sarimabbas/chaos
https://github.com/sarimabbas/chaos
https://xkcd.com/927/

to any assets stored in the package to do whatever rendering it needs to do. Here is an
example of a website being archived within a .chaos package:

– my_website.chaos
–– manifest.json
–– assets
–––– index.html
–––– cat.png

This use of packages is nothing new. For instance, the .textbundle specification was 5

proposed to store images side-by-side with Markdown text. But where .chaos differs is
in its generality: it’s not just for text, but for any kind of digital data. You can use it to write
notes, but also archive websites, credentials and configurations, chat messages, emails
etc.

More about the manifest: it’s a .JSON file that follows a structure of its own. The
specification and validator is available at github/chaos/atom.js . Here’s a look: 6

The popular Joi library was used to validate the specification in JavaScript. Since the 7

specification is open-source, it can also be parsed and validated in other languages with
types or a typing library.

 http://textbundle.org/ 5

 https://github.com/sarimabbas/chaos/blob/master/src/backend/atom.js 6

 https://github.com/hapijs/joi 7

9

http://textbundle.org/
https://github.com/sarimabbas/chaos/blob/master/src/backend/atom.js
https://github.com/hapijs/joi

I would not consider this specification to be complete. It is a living document, that will
evolve as the needs of users change, and will thus be prefixed with Semantic Versioning 8

to mitigate compatibility problems.

A lot of the properties come under a “shared” label. Chaos is driven by the recognition
that most applications, no matter how avant-garde they seem, store pretty homogenous-
looking data, usually just lists of atoms (Trello: cards, Excel: rows, Evernote: documents,
Notion: documents, Docs: documents. Think of an app. Does it store lists of things? If so,
its atoms are probably good candidates for being wrapped with .chaos). And they
usually have properties like “title”, “description” or “tags”. We can wrap up this data
inside .chaos packages, and refer to their common properties. You might already get a
sense of why this is useful, but I’ll be explicit when explaining the GUI design.

Chaos recognizes that every atom has its “secret sauce”. An Instagram post might have a
“likes” count, or a YouTube video might have a “comments” array. These properties are
not general enough to be shared with other .chaos files. So they come under a “module”
label instead. The creating module will store its unique ID and name (e.g.
com.instagram.chaos, “Instagram”) and these properties.

Graphical user interface (GUI)

Technologies

The Chaos interface is built with Electron , a framework that lets developers build cross-9

platform desktop applications with web technologies i.e. HTML, CSS and JavaScript (JS).
It bundles Node.js so that the web app can access the local file system and other 10

system APIs. It also bundles the Chromium browser so that the app is rendered 11

consistently across platforms. Thanks to this, we get bundle sizes of approximately
~150-200 MB. Chromium is also a resource hog, so memory usage is generally quite high.

Earlier experimentation with the interface used PyWebView , a Python framework that 12

swaps out Electron for a Flask server and a system web view (e.g. WKWebView in 13 14

macOS). Bundle sizes came down to ~15 MB and memory usage was negligible. It makes

 https://semver.org/ 8

 https://www.electronjs.org/ 9

 https://nodejs.org/en/ 10

 https://www.chromium.org/ 11

 https://github.com/r0×0r/pywebview 12

 https://github.com/pallets/flask 13

 https://developer.apple.com/documentation/webkit/wkwebview 14

10

https://www.electronjs.org/
https://github.com/r0x0r/pywebview
https://nodejs.org/en/
https://github.com/pallets/flask
https://www.chromium.org/
https://semver.org/
https://developer.apple.com/documentation/webkit/wkwebview

sense that this is the way of the future for web-based desktop apps, but the lack of
polished system APIs makes development very difficult. Similar options investigated
include Carlo and zserge/webview , which are under active development but lack 15 16

comprehensive documentation and a community. The footnote density of these previous
two paragraphs is representative of the fact that web-based GUI development is a rapidly
progressing area, but as of yet there are frustratingly few canonical ways to build reliable
and performant cross-platform GUIs. In theory the Chaos interface can be built with any
GUI framework, for instance the native SwiftUI framework for macOS, since the only
requirement is that the interface respect the .chaos format conventions. For my
prototype, however, I fell victim to the write-once deploy-anywhere dream and ultimately
opted for Electron.

Vue is also used: a JS frontend framework that adds convenient features like declarative 17

rendering, components, scoped CSS, global state and routing. It sounds like jargon, but
each of those characteristics reduced development time considerably. For instance,
declarative rendering means that the view is a direct function of data, unlike vanilla JS
where the DOM is mutated directly. This allows the interface to be reactive and reduces
state-related bugs. Components allow the interface to be broken into reusable pieces, for
example, a commonly used button component. Scoped CSS prevents global namespace
clashes when styling individual components. Global state simplifies state management by
allowing all components to interact as if they were communicating over a publish-
subscribe model. And routing in a JS app gives the illusion of page navigation when in
reality it is simply a way to swap out pieces of the DOM. While Vue is not necessary to
build a web-based interface, it is highly productive. My command of Vue grew
significantly over this semester, as I worked with recursive components, abused it to set
up an event bus, and put together a primitive file watcher.

Lastly, the Tailwind CSS framework was used to style many of the components. Unlike
other popular CSS frameworks like Bootstrap, it does not prescribe any opinionated
components of its own, but rather provides utility classes that allow for rapid prototyping
(sometimes this approach is called functional CSS). This, along with CSS variables, also
helped me lay the groundwork for a flexible user theming system (discussed later).

Layout

Using CSS Grid , a multi-pane layout was built. The interface borrows heavily from the 18

popular VSCode editor with modifications. For instance, a left sidebar contains the 19

 https://github.com/GoogleChromeLabs/carlo 15

 https://github.com/zserge/webview 16

 https://vuejs.org/ 17

 https://developer.mozilla.org/en-US/docs/Web/CSS/grid 18

 https://code.visualstudio.com/ 19

11

https://developer.mozilla.org/en-US/docs/Web/CSS/grid
https://code.visualstudio.com/
https://github.com/zserge/webview
https://vuejs.org/
https://github.com/GoogleChromeLabs/carlo

familiar file explorer, search, and module store. Where Chaos differs from VSCode is that,
while the latter is exclusively an editor for source code, Chaos is a previewing and editing
interface for diverse web-app data stored in .chaos files.

File explorer

The file explorer walks the OS file system and outputs details for each inode using the
lstat system call. Currently this traversal is done with JavaScript, but may be replaced
with a compiled routine (e.g. Rust) in the future to improve performance for large file
trees. This is a common technique used in Electron apps.

The retrieved data is rendered recursively by a tree view component that was built in Vue
over several weeks. Off-the-shelf components are available, but they lack flexibility e.g.
hover effects, right-click context menus and multi-root rendering. The work on this

12

component is extensive enough that it warrants being spun out into its own open-source
repository, and published on the Node Package Manager (NPM) registry for use by other
developers.

An interesting feature is a “nested” mode, which fetches both a directory’s data and
(recursively) the contents of its subdirectories. These contents are populated in the folder
view (below). This is a useful organizational trick used in popular note-taking apps like
Bear and Notion, which is easily replicated for the local filesystem with a small
modification to the traversal algorithm.

Folder view

When a node in the tree view is clicked, and if it is a folder/directory, its contents are
displayed in this view.

The folder can itself be viewed in different ways. By default, the contents are presented
as a list. There is also an option to view as a grid, with rich text and image previews. The
previews are made possible with the shared properties in the manifest of each .chaos
file, although in the future these previews can be generated for any type of file using
system APIs.

Borrowing from popular tools like Airtable and Notion, it is possible to introduce even
more view options, for example, a Kanban view that utilizes the “category” property in the
manifest to organize a folder’s contents into vertical columns, or, a Todo view that uses

13

the “deadline” timestamp to sort items by their due date. In other words, it is possible to
get the defining visuals of popular apps for “free” by simply wrapping their surprisingly
homogenous data in .chaos files, and using shared properties to construct these views.
More importantly, this means that any data stored in a .chaos file can participate in
these views; whether a note, website or email, all of them can have deadlines, categories
and tags attached.

Borrowing further from Airtable, the folder view also has sort and filtering options to
further organize its contents. With these features, and its emphasis on offline-first, file-
system based data storage, Chaos essentially becomes an upgraded Finder. Indeed, I
propose that the vision for Chaos should also be adopted by today’s operating systems,
which should similarly outfit their file explorers to retrieve, store and organize web app
data.

Any files which are not of the .chaos type (e.g. .pdf), can be previewed using the
QuickLook API on macOS by clicking the “eye” icon. They can also be clicked to open
them in the default application for that file type. This allows the user maximum flexibility
in using the Chaos interface for their base organizational needs, as well as in editing
unsupported file types with existing applications on their computer.

A technical aside: using a combination of system APIs, the relevant system icons for each
file extension (e.g. .chaos, .pdf, .png) are retrieved, just as in Finder. Some engineering
was done to make this retrieval as efficient as possible, using a cache of Base64-
encoded icon images.

14

Modules

Modules provide the core of Chaos’ functionality. They are most analogous to extensions
in VSCode. Modules must broadly fulfill two requirements:

1. Provide a visual or programmatic interface for creating .chaos files
2. Visualize or render data using those files

For web apps whose data maps neatly onto information atoms (macOS refers to these as
document-oriented apps), a module might connect to the web app on the user’s behalf,
fetch the data it needs, and render it for the user.

The exemplar modules below are currently they are baked into the core, but the
codebase is oriented towards providing a robust developer API and module submission
system in the future (see: Next steps).

Website module

Here we see a concrete example of a module; its use of the .chaos file format, and visual
interface. The website module was built as a proof-of-concept. It is intended as a
bookmarking or Pocket replacement, allowing the user to archive any link. 20

When clicking the “Add” button in the folder view, the user is presented with a list of
modules that support adding information atoms. The user chooses “Website”, and enters
a link. The module then uses system and Electron APIs to retrieve the following: metadata
(e.g. a title and description), a screenshot, PDF, MHTML and HTML archives. This allows
both redundancy and versatility of access. For instance, the PDF can be opened for
annotation, while the MHTML archive can be browsed offline. The redundancy also
ensures that the dynamic, JavaScript-heavy websites of today are faithfully preserved.

This module is somewhat general, and more specialized solutions are needed for
archiving specialized information atoms e.g. Google Docs. Nevertheless, the preview
includes a live version of the link, which still allows for some of these specialized use
cases (e.g. Docs can be edited in this way).

 https://getpocket.com/ 20

15

https://getpocket.com/

16

Slack module

This module is an example of how the .chaos format can be leveraged not just for
storing documents or information atoms, but rather credentials that can be used to render
streams of data. In other words.chaos files can occupy the data-as-code niche. 21

With a workspace open, the user can click the Chat icon in the sidebar to view the Slack
pane. Slack is a popular messaging app used by teams. The module attempts to locate a
valid Slack configuration for the workspace. If none is present, the user completes an
OAuth flow to authenticate with a particular Slack team, and the relevant access tokens
are stored in a slack.chaos file in the workspace root.

Each folder in the workspace mirrors a Slack channel, and the module makes intelligent
guesses using folder and channel names to make this guessing happen. For instance,
when a folder named “design” is opened, the module will retrieve the chat history for the
“design” channel. The messages are retrieved in real-time using WebSockets , and 22

messages can also be sent using the input field. The big idea is to keep chat history and
files in the same place, because so often our conversations center around files anyway
(e.g. “Can you take a look at that spreadsheet?”, “I updated the presentation” etc.)

 https://en.wikipedia.org/wiki/Code_as_data 21

 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API 22

17

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://en.wikipedia.org/wiki/Code_as_data

Chaos modules can actually make existing web services more powerful. When the Slack
module cannot find a channel synonymous with the currently selected folder, it offers to
create it. But it does so in a nested fashion. For instance, if the “design/inspiration” folder
is selected, the module will offer to create a Slack channel named “design____inspiration”.
This effectively lets users retrofit Slack with nested channels, which is currently not
possible with Slack proper.

Furthermore, in the future, the Slack module will be updated to retrieve messages for a
channel recursively i.e. from all nested channels. This will allow the user an eagle-eye
view of all messaging across the channel tree, and to zoom in on a particular conversation
by just clicking to the relevant folder/channel. For e.g. consider the following folder/
channel structure:

– design
–– studios
–– inspiration

By clicking on the parent “design” folder, a user will be able to see aggregate message
history from across the “design”, “studios”, and “inspiration” channels. In order to further
filter messages, a child folder can be clicked.

18

Usability testing

Protocol

The objective of the usability test was to identify and fix flaws in the interface, as well as
prioritize features for next releases.

I recruited five participants to test a prototype release of the software over video chat.
First, I provided context about the purpose and goals of the app. I then asked the
participant to complete a number of tasks in sequence while sharing their screen (I also
requested permission to record their interactions):

1. Open a folder as a workspace using the file explorer
2. Use the Website module to save a link
3. Use the Slack module to connect to a Slack workspace
4. Discover and use folder viewing options

During the test, I encouraged the participant to provide candid feedback, and to voice
their thought process while using the app. I was careful in providing minimal guidance so
that they could complete the tasks mostly by themselves.

At the end of the test, I debriefed the participant about what the study was for and how
the collected data will be used, and I also assured anonymity.

Results

Measures of success were a mix of qualitative and quantitative, including subjective user
discomfort, number of clarifying questions asked, time taken to complete tasks, and
number of mis-clicks. Since the participant sample size was small, no hard statistics can
be calculated, but there was still plenty of valuable feedback.

All participants completed the assigned tasks, with noticeable variation in success
measures that was a function of their age, self-described tech savviness and familiarity
with other productivity software.

Some of the biggest obstacles to task completion were incomplete components of the
interface which acted as distractors from the task, for example, the “search” and "module
store” components in the sidebar. For the next round of testing, these will be hidden so
that participants are not confused when attempting to follow task instructions.

The test helped prioritize next features. Before the test, I had planned to develop a Notes
module, but I noticed how participants expected common folder operations such as
“rename”, “delete” and “copy” which were not present. And so, I now plan to implement
these essential features before moving onto more ambitious additions of functionality.

19

Small pain points also emerged, which are easy wins to fix and will result in significant
increase in polish. For example, one participant commented on how the file explorer
component does not invite interaction since it is fully collapsed when the folder is first
added to the workspace. By expanding the file tree by one level, it can improve visibility,
and this is now planned for a future release. Similarly, another participant wanted to open
the live version of a website (saved with the Website module) in their default web
browser. Even though the functionality is present, it was not conspicuous, and this will be
rectified in a future release.

20

Next steps

Views

In addition to the list and grid views, a Kanban view and todo view are also planned. The
Kanban view will mimic the capabilities of Trello, allowing the user to organize
their .chaos files in columns, using the “category” property in each file’s manifest. The
todo view will mimic the capabilities of Todoist, and sort files by the “deadline” property in
the manifest.

Modules

New modules

Additional modules are planned that highlight Chaos’ potential. A Markdown-based note-
taking module, based on the existing app Intrepid , is being integrated into the interface. 23

It will utilize the .chaos format to store both text and assets, similar to .textbundle.

Developer API

An unofficial API is already present which can be accessed in any Vue component using
this.$chaos. In fact, the website and Slack modules use this API. It provides access to
the file system and certain Electron capabilities for developers to leverage in their own
modules. But security and privacy is a concern, and some work has to be done in this
area before an official release.

Module store

Approaches are being investigated to allow developers to submit their modules to a
registry, where they can be approved and made available for users to download and
install in their Chaos interface.

macOS improvements

Menu bar

In an effort to reduce friction, and prevent users from having to open the full GUI, a menu
bar interface is planned, through which modules can expose functionality to
create .chaos files. For instance, users will be able to quickly add web links via the
website module in the menu bar.

 https://github.com/sarimabbas/intrepid 23

21

https://github.com/sarimabbas/intrepid

Quick look plugin

As a further attempt to reduce friction, a quick look plugin is planned that intelligently
generates a preview for any .chaos file within Finder.

Public communications

Concrete use-cases (the interface, modules etc.) are being developed to make Chaos
more than just a concept. As mentioned at the beginning of this report, it is not
immediately clear what the system achieves without looking at some of its
implementation details. Nevertheless, work needs to be done on refining the way the
principles and goals of this project are presented to the public. There is real danger in
adopting marketing language that is so ambiguous that it dissuades use of the system.
Many productivity tools purport to do everything and solve all organizational problems but
ultimately do not make an effective case for why their paradigm is uniquely better. It is
very important that Chaos not go this route, and that its approach stands the test of time.

Chaos was recently accepted to the Beyond Boundaries symposium, an initiative by the
Digital Humanities Lab at Yale University. The symposium is intended to highlight hybrid
scholarship in the humanities. Chaos was presented as versatile tool to assist museum
curators in archiving all forms of digital history: articles, streaming media, feeds of data
and more. There is plenty of scope for museums to develop their own modules to render
specialized visualizations (e.g. 3D fossil scans, photospheres etc.) from raw data, with the
added benefit that all data lives offline and can be backed up with existing infrastructure
(tapes, drives, NAS etc.). Additionally, modules were proposed that integrate diverse data
to reveal interesting links. This has hitherto been the charge of experienced historians,
but with the unified .chaos format, a module could automate this analysis using a
similarity measure based on multiple metrics, such as time period, creator of the work,

22

and topic modeling. Such modules could power an intelligent curation mechanism that
allows institutions to automatically organize their collections.

Perhaps the path forward in communicating Chaos to the public is to develop specialized
narratives for each discipline that demonstrate its capabilities, as was done with Beyond
Boundaries. This may best demonstrate how Chaos can occupy a unique place in users’
daily workflows.

23

Acknowledgements

Many thanks to Mark and Professor Piskac for their support and in encouraging me to be
ambitious with my work. My parents and Minaam, for being my sounding boards. My
earliest prototype tester, Felicia. All my friends for their input and ideas.

24

References

• “Code as data,” Wikipedia. Jun. 04, 2019. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Code_as_data&oldid=900197220.

• “Document Packages.” https://developer.apple.com/library/archive/documentation/
CoreFoundation/Conceptual/CFBundles/DocumentPackages/DocumentPackages.html .

• “Electron | Build cross-platform desktop apps with JavaScript, HTML, and CSS.” https://
www.electronjs.org/ .

• GoogleChromeLabs/carlo. GoogleChromeLabs, https://github.com/GoogleChromeLabs/
carlo 2020.

• “grid,” MDN Web Docs. https://developer.mozilla.org/en-US/docs/Web/CSS/grid .

• hapijs/joi. hapi.js, https://github.com/hapijs/joi 2020.

• Node.js, “Node.js,” Node.js. https://nodejs.org/en/ .

• pallets/flask. The Pallets Projects, https://github.com/pallets/flask 2020.

• “Pocket.” https://getpocket.com/ .

• Roman, r0×0r/pywebview. https://github.com/r0×0r/pywebview 2020.

• S. Abbas, sarimabbas/chaos. https://github.com/sarimabbas/chaos 2020.

• S. Abbas, sarimabbas/intrepid. https://github.com/sarimabbas/intrepid 2020.

• T. Preston-Werner, “Semantic Versioning 2.0.0,” Semantic Versioning. https://
semver.org/ .

• “Software as a service,” Wikipedia. Apr. 07, 2020. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Software_as_a_service&oldid=949597498.

• “Standards,” xkcd. https://xkcd.com/927/ .

• “The Chromium Projects.” https://www.chromium.org/ .

• “The WebSocket API (WebSockets),” MDN Web Docs. https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API .

• “Visual Studio Code - Code Editing. Redefined.” https://code.visualstudio.com/ .

25

https://en.wikipedia.org/w/index.php?title=Code_as_data&oldid=900197220
https://en.wikipedia.org/w/index.php?title=Code_as_data&oldid=900197220

• “Vue.js.” https://vuejs.org/ .

• “Welcome to TextBundle.org!” http://textbundle.org/ .

• “WKWebView - WebKit | Apple Developer Documentation.” https://developer.apple.com/
documentation/webkit/wkwebview .

• S. Zaitsev, zserge/webview. https://github.com/zserge/webview 2020.

26

	Chaos
	Table of contents
	Introduction
	Principles
	Control
	Harmony
	Simplicity

	Related work
	Web clippers
	Document editors
	Specialized web browsers

	Architecture
	File format
	Graphical user interface (GUI)
	Technologies
	Layout
	File explorer
	Folder view
	Modules
	Website module
	Slack module

	Usability testing
	Protocol
	Results

	Next steps
	Views
	Modules
	New modules
	Developer API
	Module store

	macOS improvements
	Menu bar
	Quick look plugin

	Public communications

	Acknowledgements
	References

